26 research outputs found

    Understory functional groups and fire history but not experimental warming drive tree seedling performance in unmanaged boreal forests

    Get PDF
    IntroductionSurvival and growth of tree seedlings are key processes of regeneration in forest ecosystems. However, little is known about how climate warming modulates seedling performance either directly or in interaction with understory vegetation and post-fire successional stages. MethodsWe measured survival (over 3 years) and growth of seedlings of three tree species (Betula pubescens, Pinus sylvestris, and Picea abies) in a full-factorial field experiment with passive warming and removal of two plant functional groups (feather moss and/or ericaceous shrubs) along a post-fire chronosequence in an unmanaged boreal forest. ResultsWarming had no effect on seedling survival over time or on relative biomass growth. Meanwhile, moss removal greatly increased seedling survival overall, while shrub removal canceled this effect for B. pubescens seedlings. In addition, B. pubescens and P. sylvestris survival benefitted most from moss removal in old forests (>260 years since last fire disturbance). In contrast to survival, seedling growth was promoted by shrub removal for two out of three species, i.e., P. sylvestris and P. abies, meaning that seedling survival and growth are governed by different understory functional groups affecting seedling performance through different mechanism and modes of action. DiscussionOur findings highlight that understory vegetation and to a lesser extent post-fire successional stage are important drivers of seedling performance while the direct effect of climate warming is not. This suggests that tree regeneration in future forests may be more responsive to changes in understory vegetation or fire regime, e.g., indirectly caused by warming, than to direct or interactive effects of rising temperatures

    Light competition drives herbivore and nutrient effects on plant diversity

    Get PDF
    Enrichment of nutrients and loss of herbivores are assumed to cause a loss of plant diversity in grassland ecosystems because they increase plant cover, which leads to a decrease of light in the understory 1-3. Empirical tests of the role of competition for light in natural systems are based on indirect evidence, and have been a topic of debate for the last 40 years. Here we show that experimentally restoring light to understory plants in a natural grassland mitigates the loss of plant diversity that is caused by either nutrient enrichment or the absence of mammalian herbivores. The initial effect of light addition on restoring diversity under fertilization was transitory and outweighed by the greater effect of herbivory on light levels, indicating that herbivory is a major factor that controls diversity, partly through light. Our results provide direct experimental evidence, in a natural system, that competition for light is a key mechanism that contributes to the loss of biodiversity after cessation of mammalian herbivory. Our findings also show that the effects of herbivores can outpace the effects of fertilization on competition for light. Management practices that target maintaining grazing by native or domestic herbivores could therefore have applications in protecting biodiversity in grassland ecosystems, because they alleviate competition for light in the understory

    Herbivory and nutrients shape grassland soil seed banks

    Get PDF
    Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.EEA Santa CruzFil: Eskelinen, Anu. German Centre for Integrative Biodiversity Research; AlemaniaFil: Eskelinen, Anu. Helmholtz Centre for Environmental Research. Department of Physiological Diversity; AlemaniaFil: Eskelinen, Anu. University of Oulu. Ecology & Genetics; FinlandiaFil: Jessen, Maria Theresa. Helmholtz Centre for Environmental Research. Department of Physiological Diversity; AlemaniaFil: Jessen, Maria Theresa. German Centre for Integrative Biodiversity Research; AlemaniaFil: Jessen, Maria Theresa. Helmholtz Centre for Environmental Research – UFZ. Department of Community Ecology; AlemaniaFil: Bahamonde, Hector Alejandro. Universidad Nacional de La Plata. Ciencias Agrarias y Forestales; Argentina.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution & Behavior; Estados UnidosFil: Caldeira, Maria C. University of Lisbon. Forest Research Centre. Associate Laboratory TERRA. School of Agriculture; Portugal.Fil: Harpole, William Stanley. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Harpole, William Stanley. Helmholtz Centre for Environmental Research – UFZ. Department of Community Ecology; AlemaniaFil: Harpole, William Stanley. Martin Luther University. Institute of Biology; AlemaniaFil: Jia, Meiyu. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Jia, Meiyu. East China University of Technology. School of Water Resources & Environmental Engineering; China.Fil: Jia, Meiyu. Beijing Normal University. College of Life Sciences; China.Fil: Lannes, Luciola S. São Paulo State University-UNESP. Department of Biology and Animal Sciences; Brasil.Fil: Nogueira, Carla. University of Lisbon. Forest Research Centre. Associate Laboratory TERRA. School of Agriculture; Portugal.Fil: Venterink, Harry Olde. Vrije Universiteit Brussel (VUB). Department of Biology; BélgicaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Porath-Krause, Anita J. University of Minnesota. Department of Ecology, Evolution & Behavior; Estados UnidosFil: Seabloom, Eric William. University of Minnesota. Department of Ecology, Evolution & Behavior; Estados UnidosFil: Schroeder, Katie. University of Minnesota. Department of Ecology, Evolution & Behavior; Estados UnidosFil: Schroeder, Katie. University of Georgia. Odum School of Ecology; Estados UnidosFil: Tognetti, Pedro M. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.Fil: Tognetti, Pedro M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA); Argentina.Fil: Tognetti, Pedro M. Swiss Federal Institute for Forest, Snow and Landscape Research WSL; SuizaFil: Yasui, Simone-Louise E. Queensland University of Technology. School of Biological and Environmental Sciences; Australia.Fil: Virtanen, Risto. University of Oulu. Ecology & Genetics; FinlandiaFil: Sullivan, Lauren L. University of Missouri. Division of Biological Sciences; Estados UnidosFil: Sullivan, Lauren L. Michigan State University. Department of Plant Biology; Estados UnidosFil: Sullivan, Lauren L. Michigan State University. W. K. Kellogg Biological Station; Estados UnidosFil: Sullivan, Lauren L. Michigan State University. Ecology, Evolution and Behavior Program; Estados Unido

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effects of climate warming on the performance of three boreal tree seedling species in interaction with moss cover and fire history

    No full text
    Forest regeneration in the form of successful seedling establishment is a key factor for the persistence of a healthy forest ecosystem. Tree seedlings grow in a complex environment shaped by over- and understory and competition for light, nutrients and water. Not much research has been done on how climate change is impacting on seedling performance through direct and indirect warming effects including possible interactions with the growth environment i.e. understory vegetation. To elucidate these, seedlings of B. pubescens, P. sylvestris and P. abies were planted into a full-factorial experiment consisting of randomly assigned plant functional group (moss) removal in combination with passive warming (open-top chambers [OTCs]) along a post-fire chronosequence. Each seedling’s survival and growth had been surveyed over a period of three years (not as part of this thesis). At the end of the experiment, growth assessment in terms of biomass determination was done, by harvesting selected individuals. Growth has been found to be species-specific but without evidence of a direct or interactive warming effect. The survival analysis highlights that mosses promoted a positive warming effect on survival in the young and intermediate successional stages regardless of seedling species. In the old successional stage warming reduced survival regardless of moss presence explicitly for B. pubescens and P. sylvestris. If, as anticipated, climate change induces a shift toward younger forest stands by altering the fire frequency and climate warms, moss cover can therefore become a critical factor for seedling survival in the boreal forest

    Mammalian herbivory shapes intraspecific trait responses to warmer climate and nutrient enrichment

    Get PDF
    Variation in intraspecific traits is one important mechanism that can allow plant species to respond to global changes. Understanding plant trait responses to environmental changes such as grazing patterns, nutrient enrichment and climate warming is, thus, essential for predicting the composition of future plant communities. We measured traits of eight common tundra species in a fully factorial field experiment with mammalian herbivore exclusion, fertilization, and passive warming, and assessed how trait responsiveness to the treatments was associated with abundance changes in those treatments. Herbivory exhibited the strongest impact on traits. Exclusion of herbivores increased vegetative plant height by 50% and specific leaf area (SLA) by 19%, and decreased foliar C:N by 11%; fertilization and warming also increased height and SLA but to a smaller extent. Herbivory also modulated intraspecific height, SLA and foliar C:N responses to fertilization and warming, and these interactions were species-specific. Furthermore, herbivory affected how trait change translated into relative abundance change: increased height under warming and fertilization was more positively related to abundance change inside fences than in grazed plots. Our findings highlight the key role of mammalian herbivory when assessing intraspecific trait change in tundra and its consequences for plant performance under global changes.Peer reviewe

    Grazing and light modify Silene latifolia responses to nutrients and future climate

    No full text
    Altered climate, nutrient enrichment and changes in grazing patterns are important environmental and biotic changes in temperate grassland systems. Singly and in concert these factors can influence plant performance and traits, with consequences for species competitive ability, and thus for species coexistence, community composition and diversity. However, we lack experimental tests of the mechanisms, such as competition for light, driving plant performance and traits under nutrient enrichment, grazer exclusion and future climate. We used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant responses to interactions among climate, nutrients, grazing and light. We recorded transplant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light addition via LED-lamps. Future climate and fertilization together increased transplant height but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions when protected from grazers. In general, grazing had a strong negative effect on all measured variables regardless of added nutrients and light. Our results show that competition for light may lead to taller individuals and interacts with climate and nutrients to affect traits related to resource-use. Furthermore, our study suggests grazing may counteract the benefits of future climate on the biomass of species such as Silene latifolia. Consequently, grazers and light may be important modulators of individual plant performance and traits under nutrient enrichment and future climatic conditions

    Litter accumulation, not light limitation, drives early plant recruitment

    No full text
    Abstract 1. Theory predicts a decline in grassland diversity under nutrient enrichment and loss of herbivory, and one possible cause is hampered seedling recruitment. Two potential drivers for reduced diversity at the seedling level are diminished light availability caused by surrounding vegetation and accumulation of dead biomass. 2. To test the importance of these two mechanisms on early recruitment, we added seeds of 15 herbaceous grassland plant species and monitored sown and natural seedling emergence during one growing season in a full factorial field experiment with light addition and litter removal under fertilization and exclusion of mammalian herbivores in an experimental grassland in Central Germany. We used modern LED lamps, mimicking the spectrum of natural sun light, to provide light to small-statured understorey plants. This novel experimental set-up allowed us to specifically disentangle the roles of light limitation and litter accumulation independently and in combination. 3. In general, herbivore exclusion, but not fertilization increased the amount of litter biomass. Litter removal increased seedling number and richness by 83% and 33%, respectively, while light addition had no significant main effect on seedling recruitment, nor did it interact with any other factors, and did not affect recruitment even when litter was removed. In addition, fertilization had a negative and herbivore exclusion a negligible impact on recruitment, and these effects were independent of litter removal. Furthermore, seedling number and richness were unrelated to light intensity and quality, litter depth, soil moisture, temperature and C:N ratio. 4. Synthesis: These results provide novel insights into the role of light limitation versus litter accumulation driving early recruitment and help understanding the mechanisms that affect diversity in grassland communities via recruitment. Our results highlight the detrimental role of litter accumulation as opposed to surrounding vegetation induced light deficiency driving early recruitment from seeds and call for management actions that reduce the amount of litter when maintaining or restoring diversity

    Main and interactive treatment effects on <i>Silene</i> performance.

    No full text
    Main and interactive treatment effects on Silene performance.</p
    corecore